Pages

Jumat, 26 Juni 2015

RUMUS SISTEM PENDUKUNG KEPUTUSAN DENGAN METODE SAW

Metode SAW atau Simple Additive Weighting adalah metode yang sering dikenal dengan mentode penjumlahan terbobot. Maksud dari penjumlahan terbobot yaitu mencari penjumlahan terbobot dari rating di tiap alternatif pada seluruh atribut/ kriteria. Hasil/ Skor total yang diperoleh untuk sebuah alternatif yaitu dengan menjumlahkan semua hasil perkalian antara rating / yang dibandingkan pada lintas atribut dan bobot setiap atribut. Rating pada setiap atribut sebelumnya harus sudah melalui proses normalisasi.
Metode SAW memerlukan proses normalisasi matriks keputusan x ke skala yang bisa dibandingkan dengan rating alternatif yang ada. Metode SAW dirumuskan dengan rumus berikut ini:
rumus saw

Keterangan rij merupakan rating kinerja yang ternormalisasi dari alternatif Ai pada kriteria/ atribut Cj; i=1,2,3...,m dan j=1,2,3...,n. Untuk setiap alternatif diberikan nilai preferensi (Vi) dengan rumus sebagai berikut:
rumus saw

Maka akan diperoleh hasil perangkingan, v dengan nilai tinggi merupakan alternatif terbaik.
Itulah yang dimaksud metode SAW, semoga informasi tentang pengertian metode SAW tersebut bisa menjadi referensi yang baik.
1.1 Pengertian Metode Simple Additive Weighting (SAW) Metode Simple Additive Weighting (SAW) sering juga dikenal istilah metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (Fishburn, 1967) (MacCrimmon, 1968). Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada. Metode ini merupakan metode yang paling terkenal dan paling banyak digunakan dalam menghadapi situasi Multiple Attribute Decision Making (MADM). MADM itu sendiri merupakan suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu. Metode SAW ini mengharuskan pembuat keputusan menentukan bobot bagi setiap atribut. Skor total untuk alternatif diperoleh dengan menjumlahkan seluruh hasil perkalian antara rating (yang dapat dibandingkan lintas atribut) dan bobot tiap atribut. Rating tiap atribut haruslah bebas dimensi dalam arti telah melewati proses normalisasi matriks sebelumnya. 1.2 Langkah Penyelesaian Simple Additive Weighting (SAW) Langkah Penyelesaian SAW sebagai berikut : 1. Menentukan kriteria-kriteria yang akan dijadikan acuan dalam pengambilan keputusan, yaitu Ci. 2. Menentukan rating kecocokan setiap alternatif pada setiap kriteria. 3. Membuat matriks keputusan berdasarkan kriteria(Ci), kemudian melakukan normalisasi matriks berdasarkan persamaan yang disesuaikan dengan jenis atribut (atribut keuntungan ataupun atribut biaya) sehingga diperoleh matriks ternormalisasi R. 4. Hasil akhir diperoleh dari proses perankingan yaitu penjumlahan dari perkalian matriks ternormalisasi R dengan vektor bobot sehingga diperoleh nilai terbesar yang dipilih sebagai alternatif terbaik (Ai)sebagai solusi. Formula untuk melakukan normalisasi tersebut adalah : Dimana : rij = rating kinerja ternormalisasi Maxij = nilai maksimum dari setiap baris dan kolom Minij = nilai minimum dari setiap baris dan kolom Xij = baris dan kolom dari matriks Dengan rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i =1,2,…m dan j = 1,2,…,n. Nilai preferensi untuk setiap alternatif (Vi) diberikan sebagai : Dimana : Vi = Nilai akhir dari alternatif wj = Bobot yang telah ditentukan rij = Normalisasi matriks Nilai Viyang lebih besar mengindikasikan bahwa alternatifAi lebih terpilih

Copy and WIN : http://ow.ly/KNICZ
Metode Simple Additive Weighting (SAW) sering juga dikenal istilah metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (Fishburn, 1967) (MacCrimmon, 1968). Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada. Metode ini merupakan metode yang paling terkenal dan paling banyak digunakan dalam menghadapi situasi Multiple Attribute Decision Making (MADM). MADM itu sendiri merupakan suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu. Metode SAW ini mengharuskan pembuat keputusan menentukan bobot bagi setiap atribut. Skor total untuk alternatif diperoleh dengan menjumlahkan seluruh hasil perkalian antara rating (yang dapat dibandingkan lintas atribut) dan bobot tiap atribut. Rating tiap atribut haruslah bebas dimensi dalam arti telah melewati proses normalisasi matriks sebelumnya. 1.2 Langkah Penyelesaian Simple Additive Weighting (SAW) Langkah Penyelesaian SAW sebagai berikut : 1. Menentukan kriteria-kriteria yang akan dijadikan acuan dalam pengambilan keputusan, yaitu Ci. 2. Menentukan rating kecocokan setiap alternatif pada setiap kriteria. 3. Membuat matriks keputusan berdasarkan kriteria(Ci), kemudian melakukan normalisasi matriks berdasarkan persamaan yang disesuaikan dengan jenis atribut (atribut keuntungan ataupun atribut biaya) sehingga diperoleh matriks ternormalisasi R. 4. Hasil akhir diperoleh dari proses perankingan yaitu penjumlahan dari perkalian matriks ternormalisasi R dengan vektor bobot sehingga diperoleh nilai terbesar yang dipilih sebagai alternatif terbaik (Ai)sebagai solusi. Formula untuk melakukan normalisasi tersebut adalah : Dimana : rij = rating kinerja ternormalisasi Maxij = nilai maksimum dari setiap baris dan kolom Minij = nilai minimum dari setiap baris dan kolom Xij = baris dan kolom dari matriks Dengan rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i =1,2,…m dan j = 1,2,…,n. Nilai preferensi untuk setiap alternatif (Vi) diberikan sebagai : Dimana : Vi = Nilai akhir dari alternatif wj = Bobot yang telah ditentukan rij = Normalisasi matriks Nilai Viyang lebih besar mengindikasikan bahwa alternatifAi lebih terpilih

Copy and WIN : http://ow.ly/KNICZ

Tidak ada komentar:

Posting Komentar

 

Blogger news

Blogroll

About